NIUHE

日々私たちが过ごしている日常というのは、実は奇迹の连続なのかもしれんな

正则化解决过度拟合问题

前言:通常一个学习演算法是借由训练范例来训练的。亦即预期结果的范例是可知的。而学习者则被认为须达到可以预测出其它范例的正确的结果,因此,应适用于一般化的情况而非只是训练时所使用的现有资料(根据它的归纳偏向)。然而,学习者却会去适应训练资料中太特化但又随机的特征,特别是在当学习过程太久或范例太少时。在过适的过程中,当预测训练范例结果的表现增加时,应用在未知资料的表现则变更差。——From WikiPedia

Linear Regression with One Variable

Model Representation

Recall that in regression problems, we are taking input variables and trying to map the output onto a continuous expected result function.

Linear regression with one variable is also known as "univariate linear regression."

Univariate linear regression is used when you want to predict a single output value from a single input value. We're doing supervised learning here, so that means we already have an idea what the input/output cause and effect should be.

Introduction to machine learning

What is Machine Learning?

Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Powered by Hexo and Theme by Hacker
© 2019 NIUHE